# Multigenerational Mobility, Assortative Mating, and Distant Kinships

Jan Stuhler Universidad Carlos III de Madrid

July 9, Warsaw Conference on Opportunities, Mobility and Well-Being

#### Introduction

- Our understanding of intergenerational processes has been primarily based on studying parent-child and sibling pairs.
- Recently, researchers have begun to study multigenerational correlations, tracking families across multiple generations.
- ► These studies provide novel empirical "facts", which may change our understanding of intergenerational and assortative processes.

#### Content

#### 1. Multigenerational correlations

What do we know about multigenerational correlations, and how should they be interpreted?

#### 2. Assortative mating

What do we know about assortative processes? Why are multigenerational correlations informative about them?

#### 3. Kinship correlations between distant relatives

A "horizontal" approach to estimate intergenerational, sibling and assortative processes.

## Background #1: Parent-child correlations

- Our evidence on intergenerational transmission is primarily based on parent-child correlations
- ► For example, estimate a linear regression of a child's status (e.g. in income, occupation, education) on the parent's status

$$y_{i,t} = \beta y_{i,t-1} + \varepsilon_{i,t}. \tag{1}$$

or the corresponding correlation coefficient  $\rho$ .

- ▶ Parent-child correlations are typically modest and explain only a small share of variance in child status (e.g.  $\rho = 0.4 \rightarrow R2 = 0.16$ )
- Even when including additional observables of parent (Nybom and Voster 2017, Blundell 2018) or child (→ IOp, Brunori, Hufe, and Mahler 2018)

## Background #2: Sibling correlations

- ▶ In contrast, sibling correlations point to a more important role for family background
- Substituting equation (1), express sibling correlation as (Jäntti and Jenkins, 2014)

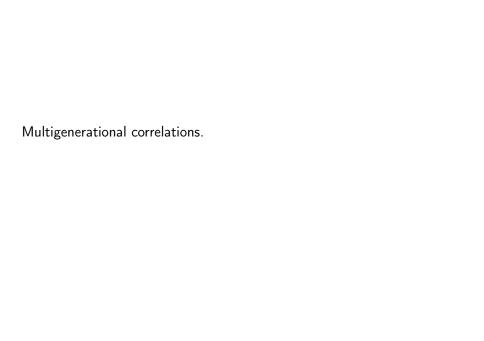
$$\rho_{sib} = \rho^2 + \text{correlation of other shared factors}$$

not captured by parental income, education, or occupation? Or do they share advantages that are orthogonal to parent's own status? e.g. Bingley, Cappellari and Tatsiramos (2016), Björklund and Jäntti (2019).

and we typically observe  $\rho_{sih} \gg \rho^2$ . ▶ Interpretation? Do siblings receive advantages from their parents

Table: Sibling correlations in income (Jäntti and Jenkins, 2014)

| Table: Sit | Table: Sibling correlations in income (Jantti and Jenkins, 2014) |              |          |                            |  |  |
|------------|------------------------------------------------------------------|--------------|----------|----------------------------|--|--|
|            |                                                                  |              | Brothers |                            |  |  |
| D 1        | 0.00                                                             |              |          | D'" 11 1 (2002)            |  |  |
| Denmark    | 0.23                                                             | 1951–1968    | ANOVA    | Björklund et al. (2002)    |  |  |
| Denmark    | 0.20                                                             | 1958-1971    | REML     | Schnitzlein (2013)         |  |  |
| China      | 0.57                                                             | Not reported | REML     | Eriksson and Zhang (2012)  |  |  |
| Finland    | 0.26                                                             | 1953-1965    | ANOVA    | Björklund et al. (2002)    |  |  |
| Finland    | 0.26                                                             | 1950-1960    | ANOVA    | Österbacka (2001)          |  |  |
| Finland    | 0.24                                                             | 1955-1965    | ANOVA    | Björklund et al. (2004)    |  |  |
| Germany    | 0.43                                                             | 1958-1971    | REML     | Schnitzlein (2013)         |  |  |
| Norway     | 0.14                                                             | 1950-1970    | ANOVA    | Björklund et al. (2002)    |  |  |
| Norway     | 0.14                                                             | 1953-1969    | ANOVA    | Björklund et al. (2004)    |  |  |
| Sweden     | 0.37                                                             | 1962-1968    | GMM      | Björklund et al. (2009)    |  |  |
| Sweden     | 0.25                                                             | 1953         | REML     | Björklund et al. (2010)    |  |  |
| Sweden     | 0.25                                                             | 1948-1965    | ANOVA    | Björklund et al. (2002)    |  |  |
| Sweden     | 0.22                                                             | 1962-1968    | REML     | Björklund et al. (2007a)   |  |  |
| Sweden     | 0.19                                                             | 1951-1968    | ANOVA    | Björklund et al. (2004)    |  |  |
| USA        | 0.49                                                             | 1947-1955    | REML     | Mazumder (2008)            |  |  |
| USA        | 0.45                                                             | 1944-1952    | REML     | Levine and Mazumder (2007) |  |  |
| USA        | 0.45                                                             | 1951-1958    | ANOVA    | Solon et al. (1991)        |  |  |
| USA        | 0.43                                                             | 1951–1967    | ANOVA    | Björklund et al. (2002)    |  |  |


REML

Schnitzlein (2013)

USA

0.45

1958-1971



## Multigenerational correlations: Iteration

- ► How large are multigenerational correlations between more distant ancestors, such as grandparents and their grandchildren?
- ► Given the parent-child regression

$$y_{i,t} = \beta y_{i,t-1} + \varepsilon_{i,t}, \tag{2}$$

it may appear natural to iterate the intergenerational coefficient  $\beta$ , i.e. the grandparent-grandchild correlation would be  $\beta^2$ . coefficient.

Implicitly, such iteration imposes additional restrictions on the error in equation (2) → the iterated regression fallacy (Stuhler, 2012)

## Multigenerational correlations: Direct evidence

Recently, direct evidence has become available.

Typically, multigenerational correlations turn out to be larger than the iterated parent-child correlations would imply.

#### Examples:

- ► Lindahl, Palme, Sandgren and Sjögren (2015)
- Braun and Stuhler (2018)
- ▶ Neidhöfer and Stockhausen (2018)
- ► Colagrossi, d'Hombres and Schnepf (2019)

### Multigenerational correlations: Direct evidence

1. Intergenerational coefficient from linear regression

$$y_{i,t} = \beta_{-1} y_{i,t-1} + \varepsilon_{i,t}. \tag{3}$$

2. Multigenerational coefficient from

$$y_{i,t} = \beta_{-k} y_{i,t-k} + \varepsilon_{i,t}. \tag{4}$$

3. Predicted multigenerational coefficient, based on iterated intergenerational measure:  $(\beta_{-1})^k$ .

## Table: Regression coefficients over 3 generations Braun and Stuhler (2018)

|                 |         | Actual  |         |         |  |
|-----------------|---------|---------|---------|---------|--|
|                 | G1–G2   | G2-G3   | G1–G3   | G1–G3   |  |
| Panel (a): sche | poling  |         |         |         |  |
| LVS-1           | 0.709   | 0.563   | 0.434   | 0.399   |  |
|                 | (0.048) | (0.032) | (0.050) | (0.036) |  |
| LVS-2           | 0.460   | 0.629   | 0.483   | 0.290   |  |
|                 | (0.066) | (0.039) | (0.056) | (0.044) |  |
| BASE            | 0.468   | 0.547   | 0.342   | 0.256   |  |
|                 | (0.101) | (0.062) | (0.074) | (0.061) |  |
| NEPS-1          | 0.416   | 0.366   | 0.242   | 0.152   |  |
|                 | (0.033) | (0.022) | (0.023) | (0.016) |  |
| NEPS-2          | 0.468   | 0.381   | 0.268   | 0.178   |  |
|                 | (0.027) | (0.021) | (0.022) | (0.015) |  |

## Table: Regression coefficients over 3 generations Braun and Stuhler (2018)

|                   |                    | Actual  |         |         |  |
|-------------------|--------------------|---------|---------|---------|--|
|                   | G1–G2              | G2-G3   | G1-G3   | G1-G3   |  |
| Panel (b): school | oling w/vocational |         |         |         |  |
| LVS-1             | 0.550              | 0.518   | 0.401   | 0.285   |  |
|                   | (0.039)            | (0.033) | (0.046) | (0.028) |  |
| NEPS-1            | 0.398              | 0.342   | 0.195   | 0.136   |  |
|                   | (0.029)            | (0.023) | (0.025) | (0.014) |  |
| Panel (c): occu   | pational prestige  |         |         |         |  |
| LVS-1             | 0.533              | 0.414   | 0.340   | 0.221   |  |
|                   | (0.079)            | (0.028) | (0.041) | (0.037) |  |
| BASE              | 0.670              | 0.378   | 0.315   | 0.254   |  |
|                   | (0.120)            | (0.052) | (0.060) | (0.060) |  |

## Regression coefficients over 3 generations Colagrossi, d'Hombres and Schnepf (2019)

|                |                  | Observed         |                   | Iterated      |      |
|----------------|------------------|------------------|-------------------|---------------|------|
|                | $r_{-1}^{G1-G2}$ | $r_{-1}^{G2-G3}$ | $r_{-2}$          | $(r_{-1})^2$  | N    |
| Austria        | 0.571 (0.031)    | 0.608 (0.023)    | 0.375 (0.031)     | 0.347 (0.024) | 819  |
| Belgium        | 0.404 (0.032)    | 0.495 (0.034)    | 0.271 (0.031)     | 0.202 (0.022) | 814  |
| Bulgaria       | 0.365 (0.035)    | 0.458 (0.032)    | 0.225 (0.035)     | 0.170 (0.020) | 712  |
| Croatia        | 0.422 (0.033)    | 0.340 (0.046)    | $0.250 \ (0.039)$ | 0.145(0.022)  | 860  |
| Cyprus         | 0.337 (0.042)    | 0.325(0.092)     | 0.191 (0.045)     | 0.110 (0.033) | 385  |
| Czech Republic | 0.413 (0.043)    | 0.331 (0.044)    | 0.117 (0.043)     | 0.138 (0.022) | 768  |
| Denmark        | 0.266 (0.033)    | 0.442 (0.029)    | 0.187 (0.031)     | 0.125 (0.016) | 848  |
| Estonia        | 0.276 (0.044)    | 0.409 (0.035)    | 0.169 (0.041)     | 0.117 (0.019) | 429  |
| Finland        | 0.345 (0.035)    | 0.378 (0.046)    | 0.165 (0.039)     | 0.131 (0.021) | 580  |
| France         | 0.428 (0.039)    | 0.379 (0.044)    | 0.235 (0.045)     | 0.163(0.025)  | 519  |
| Germany        | 0.557(0.026)     | 0.589(0.024)     | $0.391\ (0.025)$  | 0.328(0.022)  | 1011 |
| Greece         | 0.348 (0.031)    | 0.436 (0.047)    | 0.211 (0.035)     | 0.154 (0.024) | 834  |
| Hungary        | 0.389 (0.037)    | 0.487 (0.045)    | 0.255(0.034)      | 0.192 (0.026) | 803  |
| Ireland        | 0.359 (0.034)    | 0.371 (0.046)    | 0.196 (0.031)     | 0.133 (0.022) | 662  |
| Italy          | 0.529 (0.030)    | 0.457 (0.045)    | 0.238 (0.037)     | 0.243(0.027)  | 749  |
| Latvia         | 0.334 (0.046)    | 0.246 (0.046)    | 0.152(0.044)      | 0.084 (0.020) | 422  |

## Regression coefficients over 3 generations Colagrossi, d'Hombres and Schnepf (2019)

|                |                   | Observed         |                   | Iterated      |       |
|----------------|-------------------|------------------|-------------------|---------------|-------|
|                | $r_{-1}^{G1-G2}$  | $r_{-1}^{G2-G3}$ | $r_{-2}$          | $(r_{-1})^2$  | N     |
|                |                   |                  |                   |               |       |
| Lithuania      | 0.246 (0.037)     | 0.381 (0.033)    | 0.166 (0.030)     | 0.098 (0.017) | 588   |
| Luxembourg     | 0.406 (0.041)     | 0.569 (0.044)    | 0.294 (0.035)     | 0.238 (0.031) | 316   |
| Malta          | 0.412(0.052)      | 0.302(0.107)     | $0.251 \ (0.056)$ | 0.127 (0.042) | 252   |
| Netherlands    | 0.339 (0.031)     | 0.511 (0.028)    | 0.171 (0.030)     | 0.181 (0.017) | 620   |
| Poland         | 0.379 (0.043)     | 0.435(0.052)     | 0.242 (0.041)     | 0.166 (0.028) | 632   |
| Portugal       | 0.472 (0.051)     | 0.608 (0.066)    | 0.241 (0.058)     | 0.292 (0.040) | 592   |
| Romania        | 0.432 (0.037)     | 0.348 (0.039)    | 0.260 (0.030)     | 0.152(0.021)  | 729   |
| Slovakia       | 0.451 (0.039)     | 0.384 (0.055)    | 0.214 (0.042)     | 0.174 (0.030) | 839   |
| Slovenia       | 0.323 (0.040)     | 0.313 (0.049)    | 0.159(0.042)      | 0.101 (0.019) | 671   |
| Spain          | $0.366 \ (0.036)$ | 0.412 (0.053)    | 0.217 (0.037)     | 0.152 (0.027) | 787   |
| Sweden         | 0.190 (0.031)     | 0.400 (0.032)    | $0.153 \ (0.027)$ | 0.087 (0.013) | 786   |
| United Kingdom | 0.422 (0.029)     | 0.437 (0.035)    | 0.257 (0.030)     | 0.185 (0.019) | 664   |
| EU-28          | 0.463 (0.006)     | 0.508 (0.007)    | 0.306 (0.006)     | 0.236 (0.005) | 18691 |

## A new descriptive fact?

- ▶ Increasingly well established (?) that parent-child correlations tend to understate the transmission of socioeconomic advantages across multiple generations (i.e. parent-child correlations decay at a less-than geometric rate)
- ► How should this "descriptive fact" be interpreted? Does it tell us something new on intergenerational and assortative processes?

## A new descriptive fact? Interpretation

Why do multigenerational correlations diminish less quickly across generations than parent-child correlations seemingly suggest?

Three explanations (Stuhler, 2012):

- Latent factor model
   Observed status ≠ "true" status
- Multigenerational transmission model ("Grandparent effects")
   Grandparents might have an independent causal effect on their grandchildren.
- Multiplicity of transmission mechanisms
   Parents affect child outcomes via multiple pathways, and some pathways have higher persistence than others.

Observed status  $\neq$  "true" status?

For illustration, consider the following simple latent factor model (with a one-parent one-child family structure):

$$y_{i,t} = \rho e_{i,t} + u_{i,t} \tag{5}$$

$$e_{i,t} = \lambda e_{i,t-1} + v_{i,t}, \tag{6}$$

where variables are measured as trendless indices with mean zero and variance one:

- $\triangleright$   $y_{i,t}$ : observed status in generation t of family i
- ► *e<sub>i,t</sub>*: latent advantages or "endowments"
- ▶ *uit* and *vit*: market and endowment luck

▶ Given equations (5) and (6) the intergenerational coefficient equals

$$\beta_{-1} = \frac{Cov(y_t, y_{t-1})}{Var(y_{t-1})} = \rho^2 \lambda$$
 (7)

and across three generations

$$\beta_{-2} = \frac{Cov(y, y_{t-2})}{Var(y_{t-2})} = \rho^2 \lambda^2.$$
 (8)

▶ The model can rationalize "excess persistence", as

$$\Delta = \beta_{-2} - (\beta_{-1})^2 = (1 - \rho^2)\rho^2\lambda^2 > 0$$

if latent  $\neq$  observed status ( $\rho < 1$ ).

▶ Given equations (5) and (6) the intergenerational coefficient equals

$$\beta_{-1} = \frac{Cov(y_t, y_{t-1})}{Var(y_{t-1})} = \rho^2 \lambda$$
 (7)

and across three generations

$$\beta_{-2} = \frac{Cov(y, y_{t-2})}{Var(y_{t-2})} = \rho^2 \lambda^2.$$
 (8)

▶ The model can rationalize "excess persistence", as

$$\Delta = \beta_{-2} - (\beta_{-1})^2 = (1 - \rho^2)\rho^2\lambda^2 > 0$$

if latent  $\neq$  observed status ( $\rho$  < 1).

 With linked data across 3 generations the latent factor model is identified, as

$$\lambda = \frac{\beta_{-2}}{\beta_{-1}}$$

and

$$\rho = \left(\frac{\beta_{-1}^2}{\beta_{-2}}\right)^{1/2}$$

- ► This relation relies on steady-state assumptions, which can be problematic (Nybom and Stuhler, 2019).
- ▶ With data across 4 generations, we can loosen the restriction that the  $\lambda$  and  $\rho$  are constant across generations.

## Estimates of the latent factor model Braun and Stuhler (2018)

|                   | (1)               | (2)          | (3)     | (4)     |
|-------------------|-------------------|--------------|---------|---------|
|                   | $\beta_{-1}$      | $\beta_{-2}$ | λ       | ρ       |
| Panel (a): schoo  | ling              |              |         |         |
| LVS-1             | 0.468             | 0.231        | 0.494   | 0.974   |
|                   | (0.026)           | (0.027)      | (0.044) | (0.045) |
| LVS-2             | 0.419             | 0.293        | 0.699   | 0.774   |
|                   | (0.033)           | (0.032)      | (0.072) | (0.057) |
| BASE              | 0.434             | 0.249        | 0.574   | 0.869   |
|                   | (0.047)           | (0.078)      | (0.095) | (0.085) |
| NEPS-1            | 0.378             | 0.226        | 0.598   | 0.795   |
|                   | (0.020)           | (0.022)      | (0.054) | (0.044) |
| NEPS-2            | 0.412             | 0.255        | 0.619   | 0.816   |
|                   | (0.017)           | (0.021)      | (0.042) | (0.032) |
| Panel (b): school | ling w/vocational |              |         |         |
| LVS-1             | 0.442             | 0.272        | 0.616   | 0.847   |
|                   | (0.023)           | (0.032)      | (0.058) | (0.043) |
| NEPS-1            | 0.370             | 0.196        | 0.530   | 0.836   |
|                   | (0.019)           | (0.024)      | (0.058) | (0.049) |
| Panel (c): occup  | ational prestige  |              |         |         |
| LVS-1             | 0.382             | 0.250        | 0.654   | 0.764   |
|                   | (0.033)           | (0.027)      | (0.072) | (0.062) |
| BASE              | 0.425             | 0.257        | 0.605   | 0.838   |
| -                 | (0.058)           | (0.051)      | (0.126) | (0.115) |

## Estimates of the latent factor model Colagrossi, d'Hombres and Schnepf (2019)

|                | $r_{-1}$      | $r_{-2}$         | $\lambda$         | $\rho$            | N    |
|----------------|---------------|------------------|-------------------|-------------------|------|
| Austria        | 0.589 (0.020) | 0.375 (0.031)    | 0.637 (0.038)     | 0.962 (0.025)     | 819  |
| Belgium        | 0.450 (0.024) | 0.271(0.031)     | $0.603 \ (0.057)$ | 0.863(0.047)      | 814  |
| Bulgaria       | 0.412 (0.024) | 0.225 (0.035)    | $0.546 \ (0.071)$ | $0.868 \ (0.058)$ | 712  |
| Croatia        | 0.381 (0.030) | 0.250 (0.039)    | $0.656 \ (0.095)$ | 0.762(0.067)      | 860  |
| Cyprus         | 0.331 (0.049) | $0.191\ (0.045)$ | 0.577(0.141)      | 0.758 (0.150)     | 385  |
| Czech Republic | 0.372(0.030)  | 0.117(0.043)     | 0.316 (0.106)     | 1.084 (0.263)     | 768  |
| Denmark        | 0.354 (0.022) | 0.187(0.031)     | 0.529(0.081)      | 0.818 (0.068)     | 848  |
| Estonia        | 0.342(0.027)  | 0.169 (0.041)    | 0.493 (0.110)     | 0.833(0.124)      | 429  |
| Finland        | 0.362 (0.029) | 0.165 (0.039)    | 0.455 (0.097)     | 0.891 (0.096)     | 580  |
| France         | 0.404 (0.031) | 0.235 (0.045)    | 0.582 (0.100)     | 0.833 (0.079)     | 519  |
| Germany        | 0.573 (0.019) | 0.391 (0.025)    | 0.683 (0.038)     | 0.916 (0.030)     | 1011 |
| Greece         | 0.392 (0.031) | 0.211 (0.035)    | 0.539 (0.071)     | 0.853(0.063)      | 834  |
| Hungary        | 0.438 (0.030) | 0.255(0.034)     | 0.582 (0.064)     | 0.868(0.054)      | 803  |
| Ireland        | 0.365(0.030)  | 0.196 (0.031)    | 0.538 (0.073)     | 0.823 (0.067)     | 662  |
| Italy          | 0.493 (0.028) | 0.238 (0.037)    | 0.482 (0.060)     | 1.011 (0.058)     | 749  |
| Latvia         | 0.290 (0.035) | 0.152 (0.044)    | $0.525\ (0.145)$  | 0.743 (0.119)     | 422  |

## Estimates of the latent factor model Colagrossi, d'Hombres and Schnepf (2019)

|                | $r_{-1}$          | $r_{-2}$          | $\lambda$         | $\rho$        | N     |
|----------------|-------------------|-------------------|-------------------|---------------|-------|
|                |                   |                   |                   |               |       |
|                |                   |                   |                   |               |       |
| Lithuania      | 0.313 (0.027)     | 0.166 (0.030)     | 0.528 (0.093)     | 0.770 (0.088) | 588   |
| Luxembourg     | 0.487(0.032)      | $0.294\ (0.035)$  | 0.603 (0.060)     | 0.899(0.057)  | 316   |
| Malta          | 0.357 (0.061)     | $0.251\ (0.056)$  | 0.703 (0.195)     | 0.712(0.136)  | 252   |
| Netherlands    | 0.425 (0.020)     | 0.171 (0.030)     | $0.403 \ (0.060)$ | 1.027 (0.076) | 620   |
| Poland         | 0.407 (0.035)     | 0.242(0.041)      | $0.594\ (0.095)$  | 0.828 (0.083) | 632   |
| Portugal       | $0.540 \ (0.039)$ | $0.241 \ (0.058)$ | 0.446 (0.097)     | 1.101 (0.140) | 592   |
| Romania        | 0.390 (0.026)     | $0.260\ (0.030)$  | 0.667 (0.077)     | 0.765 (0.060) | 729   |
| Slovakia       | 0.418 (0.035)     | 0.214 (0.042)     | 0.513 (0.080)     | 0.903 (0.073) | 839   |
| Slovenia       | 0.318 (0.030)     | 0.159 (0.042)     | 0.500(0.127)      | 0.798 (0.138) | 671   |
| Spain          | 0.389(0.035)      | 0.217 (0.037)     | 0.557(0.085)      | 0.836 (0.077) | 787   |
| Sweden         | 0.295(0.022)      | 0.153 (0.027)     | 0.518 (0.091)     | 0.754 (0.078) | 786   |
| United Kingdom | 0.430 (0.023)     | 0.257 (0.03)      | 0.599 (0.062)     | 0.847 (0.049) | 664   |
| EU-28          | 0.485 (0.005)     | 0.306 (0.006)     | 0.630 (0.011)     | 0.878 (0.009) | 18691 |

## Alternative empirical strategies

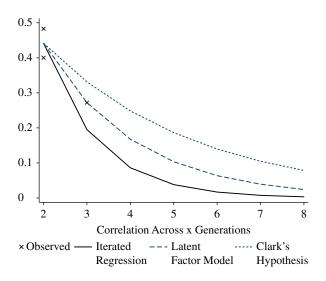
Quite different empirical strategies are potentially informative about the "true" persistence in latent factor model:

- 1. Braun and Stuhler (2018): compare inter- and multigenerational correlations to indirectly back out persistence in latent advantages
- 2. Clark et al (2014+): average status across individuals sharing the same surname (intuition: average out the "measurement error")
- 3. Nybom and Vosters (2017): combine multiple proxies of individual social status (in an efficient way)
- 4. Adermon, Lindahl and Palme (2018): average status across relatives within a "dynasty" (relatives in t-1)

#### Surname-based estimators

#### The name-based estimator used in Clark et al (2014+)

- 1. Construct average socioeconomic status within each surname
- 2. Estimate intergenerational regression on surname averages


#### Interpretation:

- Can be interpreted as TS2SLS estimator, in which surnames are being used to instrument unobserved parental status.
- Name-based estimators can be difficult to interpret (Chetty et al 2014, Solon 2018, Santavirta and Stuhler, 2019).

#### Main findings:

- ▶ Clark estimates  $\lambda \approx 0.75$
- Estimates similar across countries and periods

## Direct vs. surname-based estimators of multigenerational persistence Braun and Stuhler (2018)



## Name-based estimators, from Santavirta and Stuhler (2019)

| Authors                                   | Year | Publication                         | Names                         | Method                                                                               | Data                                             | Main Application                                              |
|-------------------------------------------|------|-------------------------------------|-------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|
| Clark                                     | 2012 | Working Paper                       | Surnames                      | Name<br>Frequencies                                                                  | Repeated cross-section<br>of surname frequencies | Multigenerational mobility<br>in Sweden                       |
| Clark                                     | 2012 | Working Paper                       | Surnames                      | Grouping                                                                             | Repeated cross-section<br>of rare surnames       | Multigenerational mobility<br>in England                      |
| Collado, Ortuño<br>and Romeu              | 2012 | Reg. Science and<br>Urban Econ.     | Surnames                      | Grouping<br>(by region)                                                              | Single cross-section<br>across areas             | Intergenerational consumption<br>mobility in Spain            |
| Collado, Ortuño<br>and Romeu              | 2013 | Working Paper                       | Surnames                      | Grouping                                                                             | Repeated cross-section<br>of surname averages    | Multigenerational mobility<br>in Spanish provinces            |
| Clark                                     | 2014 | Princeton<br>University Press       | Surnames                      | Grouping                                                                             | Repeated cross-section<br>of rare surnames       | Inter- and multigenerational<br>mobility in various countries |
| Clark and Cummins                         | 2014 | Economic Journal                    | Direct and<br>Surnames        | Grouping                                                                             | Repeated cross-section<br>of rare surnames       | Multigenerational wealth<br>mobility in England               |
| Güell, Rodríguez<br>and Telmer            | 2015 | Review of<br>Economic Studies       | Surnames                      | R2                                                                                   | Single cross-section                             | Intergenerational mobility<br>level and trends in Catalonia   |
| Clark and<br>Diaz-Vidal                   | 2015 | Working Paper                       | Surnames                      | Grouping                                                                             | Repeated cross-section<br>of surname averages    | Multigenerational and<br>assortative mobility in Chile        |
| Olivetti and<br>Paserman                  | 2015 | American<br>Economic Review         | First names                   | Two-sample<br>Two-stage IV                                                           | Repeated cross-section                           | Historical mobility trends<br>in United States                |
| Barone and Mocetti                        | 2016 | Working Paper                       | Surnames                      | Two-sample<br>Two-stage IV                                                           | Repeated cross-section<br>of surname averages    | Multigenerational mobility in<br>Florence, Italy (1427-2011)  |
| Nye et al                                 | 2016 | Working Paper                       | Surnames                      | Name<br>Frequencies                                                                  | Repeated cross-section<br>of name frequencies    | Intergenerational mobility<br>in Russia                       |
| Durante, Labartino<br>and Perotti         | 2016 | Working Paper<br>(R&R AEJ:Policy)   | Surnames                      | Name<br>Frequencies                                                                  | Single cross-section of<br>surname frequencies   | Family connections at Italian universities                    |
| Feigenbaum                                | 2018 | Economic Journal                    | Direct, First<br>and Surnames | R2, Grouping                                                                         |                                                  | Historical mobility level in<br>Iowa, United States           |
| Güell, Pellizzari,<br>Pica, and Rodríguez | 2018 | Economic Journal                    | Surnames                      | R2                                                                                   | Single cross-section<br>across areas             | Cross-regional variation in<br>mobility in Italy              |
| Olivetti, Paserman<br>and Salisbury       | 2018 | Explorations in<br>Economic History | First names                   | $\begin{array}{c} {\rm Two\text{-}sample} \\ {\rm Two\text{-}stage\ IV} \end{array}$ | Repeated cross-section                           | Multigenerational mobility<br>in United States                |

Note: The table lists selected intergenerational mobility research that use first or surnames to overcome the lack of direct parent-child links. The year indicates the year of article publication, and does therefore not reflect the time at which the study was created.

#### Surname-based estimators

Name-based studies are informative about latent or "true" persistence for two reasons:

- 1. The *average* observed socioeconomic status in a name group may be a better proxy for latent advantages
- May be able to link many more generations than what would be possible in data with direct family linkages Example: Barone and Mocetti (2009)

Figure: From Barone and Mocetti (2009)

| -       | 2011    | 1427                                        |                        |                      |
|---------|---------|---------------------------------------------|------------------------|----------------------|
| Surname | Euros   | Modal occupation                            | Earnings<br>percentile | Wealth<br>percentile |
|         |         |                                             |                        |                      |
| A       | 146,489 | Member of shoemakers' guild                 | 97%                    | 85%                  |
| В       | 94,159  | Member of wool guild                        | 67%                    | 73%                  |
| С       | 77,647  | Member of silk guild                        | 93%                    | 86%                  |
| D       | 73,185  | Messer (lawyer)                             | 93%                    | 85%                  |
| Е       | 64,228  | Brick layer, sculptor, stone worker         | 54%                    | 53%                  |
|         |         | Panel B: last 5 surnames in 2011            |                        |                      |
| V       | 9,702   | Worker in combing, carding and sorting wool | 53%                    | 45%                  |
| W       | 9,486   | Worker in combing, carding and sorting wool | 41%                    | 49%                  |
| X       | 9,281   | Sewer of wool cloth                         | 39%                    | 19%                  |
| Y       | 7,398   | Medical doctor                              | 84%                    | 38%                  |
| Z       | 5,945   | Member of shoemakers' guild                 | 55%                    | 46%                  |

Source: 1427 Census of Florence and tax records from the Florence statistical office (fiscal year 2011); surnames are not reported for privacy reasons.

### Alternative interpretations

Why do multigenerational correlations diminish less quickly across generations than parent-child correlations seemingly suggest?

Three explanations (Stuhler, 2012):

- Latent factor model
   Observed status ≠ "true" status
- Multigenerational transmission model ("Grandparent effects")
   Grandparents might have an independent causal effect on their grandchildren.
- Multiplicity of transmission mechanisms
   Parents affect child outcomes via multiple pathways, and some pathways have higher persistence than others.

## Alternative interpretations: "Grandparent effects"

Since Mare (2012), much interest in higher-order multigenerational effects. "Do grandparents matter?"

ightharpoonup Estimate coefficient  $eta_{gp}$  in the child-parent-grandparent regression

$$y_{it} = \beta_p y_{it-1} + \beta_{gp} y_{it-2} + \varepsilon_{it}, \tag{9}$$

Is this coefficient positive, and does it reflect a causal effect of grandparents on grandchildren (that is independent of the parent)?

► Examples include Modin, Erikson, Vagerö (2013), Chan and Boliver (2013), Kolk (2014), Ferrie and Long (2015)

## Duality between "grandparent effects" and latent model

The coefficient  $\beta_{gp}$  (the "grandparent effect") can be rewritten as

$$\beta_{gp} = \frac{Cov(y_t, \tilde{y}_{t-2})}{Var(\tilde{y}_{t-2})} = \frac{(\beta_{-2} - \beta_{-1}^2)}{1 - \beta_{-1}^2}$$

where  $\tilde{y}_{t-1}$  is the residual from regressing  $y_{t-1}$  on  $y_{t-2}$ , and  $\tilde{y}_{t-2}$  is the residual from the reverse regression (FWL theorem).

#### Implications:

- ▶ **Any** process generating excess persistence  $(\beta_{-2} > \beta_{-1}^2)$  also generates a positive grandparent coefficient.
- $\beta_{gp} > 0$  is just the flip side of less-than-geometric decay of multigenerational associations  $\rightarrow$  statistically hard to distinguish
- ▶ Braun and Stuhler (2018) argue against causal interpretation of  $\beta_{gp}$ , but no consensus yet (see Anderson, Sheppard and Monden, 2018)



## Intergenerational mobility and assortative mating

- ► An important component of intergenerational persistence is the degree of assortative mating.
- ▶ New findings on inter- vs. multigenerational persistence may be informative about, and have novel implications for assortative mating.

## The latent factor model with assortative mating

Consider again the latent factor model, but assume that child endowment is determined by the average parental endowments, i.e.

$$e_{i,t} = \tilde{\lambda} \, \bar{e}_{i,t-1} + v_{i,t},$$

with  $\bar{e}_{i,t-1} = (e^m_{i,t-1} + e^p_{i,t-1})/2$  (m and p = maternal and paternal).

The father-child correlation in status equals then  $eta_{-1}=
ho^2\lambda,$  where

$$\lambda = \tilde{\lambda} \left( 1 + Corr(e_{i,t-1}^m, e_{i,t-1}^p) \right) / 2. \tag{10}$$

can be interpreted as a reduced-form parameter consisting of:

- 1. the "heritability" of average parental endowments,  $\tilde{\lambda}$
- 2. the degree of assortative mating in *latent* status,  $Corr(e^m_{i,t-1},e^p_{i,t-1})$

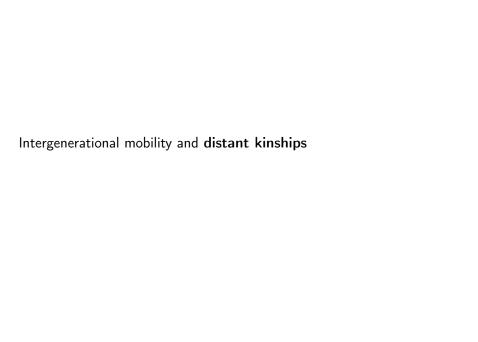
## The latent factor model with assortative mating

Consider again the latent factor model, but assume that child endowment is determined by the average parental endowments, i.e.

$$e_{i,t} = \tilde{\lambda} \, \bar{e}_{i,t-1} + v_{i,t},$$

with  $\bar{e}_{i,t-1} = (e^m_{i,t-1} + e^p_{i,t-1})/2$  (m and p = maternal and paternal).

The father-child correlation in status equals then  $\beta_{-1} = \rho^2 \lambda$ , where


$$\lambda = \tilde{\lambda} \left( 1 + Corr(e_{i,t-1}^m, e_{i,t-1}^p) \right) / 2. \tag{10}$$

can be interpreted as a reduced-form parameter consisting of:

- 1. the "heritability" of average parental endowments,  $\tilde{\lambda}$
- 2. the degree of assortative mating in *latent* status,  $Corr(e_{i,t-1}^m, e_{i,t-1}^p)$

- In this model, the key assortative parameter is the assortative mating in latent advantages (i.e.  $Corr(e_{i,t-1}^m, e_{i,t-1}^p)$  instead of  $Corr(y_{i+1}^m, y_{i+1}^p)$ ).
- Corr $(y_{i,t-1}^m, y_{i,t-1}^p)$ ).

  However, the literature on assortative mating focuses primarily on
- However, the literature on assortative mating focuses primarily on spousal correlations in observed advantages (e.g. spousal correlation in years of schooling is often around ≈ 0.5).
   Few studies focus on spousal correlations in latent advantages.
- Exception: Ermisch, Francesconi, and Siedler (2006).
  We show next that spousal correlations in observable status are too low to rationalize pattern of socioeconomic advantages across kins.



### Introduction

# Ortuño-Ortin, Collado and Stuhler (2019), "Kinship Correlations and Intergenerational Mobility"

How persistent are socioeconomic inequalities between families?

► How strongly are advantages transmitted from one generation to the next? How similar are siblings or spouses?

What are the causal mechanisms (e.g. nature vs nurture)?

► For example, could genetic transmission explain the observed persistence of inequalities in the very long run?

### Introduction

Ortuño-Ortin, Collado and Stuhler (2019), "Kinship Correlations and Intergenerational Mobility"

How persistent are socioeconomic inequalities between families?

► How strongly are advantages transmitted from one generation to the next? How similar are siblings or spouses?

What are the causal mechanisms (e.g. nature vs nurture)?

► For example, could genetic transmission explain the observed persistence of inequalities in the very long run?

# Ortuño-Ortin, Collado and Stuhler (2019)

### Questions:

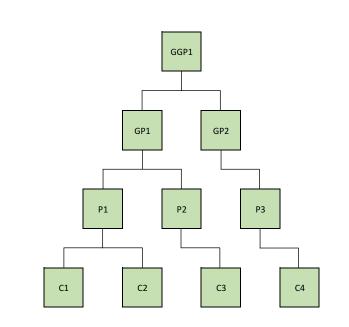
- 1. How persistent are socioeconomic inequalities?
- 2. What are the causal mechanisms (e.g. nature vs nurture)?

### What we do:

- Estimate more and more distant kinship moments by tracking "horizontal" kins such as siblings and siblings in-law
- ► Fit a model of intergenerational and assortative processes that is (more) general than previous models

# Data: Swedish registers and Spanish Census

# (1) Swedish register data:


- ▶ 1/3 of Swedish population born between 1932 and 1967, plus their siblings, parents and children
- ► family links up to three (four) generations (censoring/selectivity)
- (2) Spanish Census from Cantabria, with full name of each person:
  - newborns in Spain receive two surnames, with first=father's and second=mother's (first) surname
  - child generation born 1956-1976 (71,479 males, 68,830 females), identify relatives via surnames

# Data: Swedish registers and Spanish Census

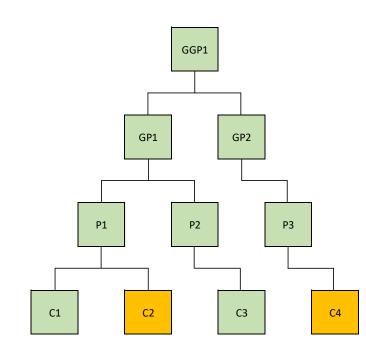
### (1) Swedish register data:

- ▶ 1/3 of Swedish population born between 1932 and 1967, plus their siblings, parents and children
- ► family links up to three (four) generations (censoring/selectivity)
- (2) Spanish Census from Cantabria, with full name of each person:
  - newborns in Spain receive two surnames, with first=father's and second=mother's (first) surname
  - child generation born 1956-1976 (71,479 males, 68,830 females), identify relatives via surnames

▶ Identifying relatives in the Spanish Census



|       | kinship          | kinship type       | # correlations |
|-------|------------------|--------------------|----------------|
| а–х   | spouses          | direct, horizontal | 1              |
| x-b   | siblings         | direct, horizontal | 3              |
| ax-by | cousins          | direct, horizontal | 10             |
| ах-а  | child-parent     | direct, vertical   | 4              |
| ax-b  | child-uncle/aunt | direct vertical    | 8              |


| outcome | n kinship          | # families | # pairs | observed |
|---------|--------------------|------------|---------|----------|
| educyrs | 1 husband-wife     | 399,861    | 413,062 | 0.491    |
|         | 2 Brothers         | 49,327     | 59,749  | 0.438    |
|         | 3 Sisters          | 44,924     | 53,787  | 0.418    |
|         | 4 Brothers-Sisters | 87,548     | 111,545 | 0.375    |
|         | 5 MCousins-FB      | 31,353     | 70,137  | 0.167    |
|         | 6 FCousins-FB      | 29,581     | 63,032  | 0.135    |
|         | 7 MFCousins-FB     | 53,357     | 144,100 | 0.143    |
|         | 8 MCousins-MS      | 36,602     | 82,049  | 0.172    |
|         | 9 FCousins-MS      | 34,025     | 73,649  | 0.158    |
|         | 10 MFCousins-MS    | 62,522     | 170,577 | 0.157    |
|         | 11 MCousins-FBMS   | 62,210     | 156,747 | 0.161    |
|         | 12 FCousins-FBMS   | 58,410     | 140,522 | 0.142    |
|         | 13 MFCousins-FMMF  | 60,335     | 148,691 | 0.143    |
|         | 14 MFCousins-MMFF  | 60,200     | 148,631 | 0.147    |
|         | 15 Father-son      | 320,020    | 396,304 | 0.380    |
|         | 16 Father-daugther | 306,933    | 376,255 | 0.321    |
|         | 17 Mother-son      | 342,038    | 306,470 | 0.366    |
|         | 18 Mother-daugther | 327,809    | 400,337 | 0.347    |
|         | 19 Uncle-nephew-BF | 177,515    | 280,067 | 0.254    |
|         | 20 Uncle-niece-BF  | 172,660    | 266,289 | 0.218    |
|         | 21 Uncle-nephew-BM | 198,086    | 312,019 | 0.241    |
|         | 22 Uncle-niece-BM  | 191,862    | 295,580 | 0.209    |
|         | 23 Aunt-nephew-SF  | 182,561    | 285,618 | 0.234    |
|         | 24 Aunt-niece-SF   | 176,859    | 270,325 | 0.217    |
|         | 25 Aunt-nephew-SM  | 209,942    | 333,141 | 0.251    |

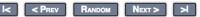
203,208

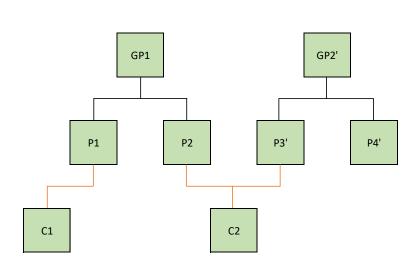
316,625

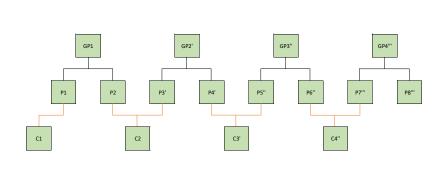
0.235

26 Aunt-niece-SM




# SIBLING-IN-LAW PREV RANDOM NEXT > > |


PEOPLE COMPLAIN THAT "<\(\chi\)" (COUSIN <\(\gamma\) TIMES REMOVED" IS HARD TO UNDERSTAND,
BUT TO ME THE MOST CONFUSING ONE IS SIBLING-IN-LAU, BECAUSE IT CHAINS ACROSS
BOTH SIBLING AND MARRIAGE LINKS AND I DON'T REALLY KNOW WHERE IT STOPS.


SIBLINGS-IN-LAW

ALSO SIBLINGS-IN-LAW, I THINK?

POSSIBLE ADDITIONAL SIBLINGS-IN-LAW???







|                     | kinship                                | kinship type         | # correlations |
|---------------------|----------------------------------------|----------------------|----------------|
| а-х                 | spouses                                | direct, horizontal   | 1              |
| x-b                 | siblings                               | direct, horizontal   | 3              |
| ax–by               | cousins                                | direct, horizontal   | 10             |
| ax–a                | child-parent                           | direct, vertical     | 4              |
| ax-b                | child-uncle/aunt                       | direct, vertical     | 8              |
| <i>a</i> – <i>b</i> | siblings in-law (degree 1)             | affinity, horizontal | 4              |
| a-y                 | spouse of sib-in-law (dg 1)            | "                    | 3              |
| <i>x</i> – <i>c</i> | sibling of sib-in-law (dg 1)           | "                    | 4              |
| а–с                 | siblings in-law (degree 2)             | "                    | 8              |
| a-z                 | spouse of sib-in-law (dg 2)            | "                    | 4              |
| x-d                 | sibling of sib-in-law (dg 2)           | "                    | 10             |
| a– $d$              | siblings in-law (degree 3)             | "                    | 16             |
| a–w                 | spouse of                              | "                    |                |
| ах–у                | child-sibling in law of parents (dg 1) | affinity, vertical   | 8              |
|                     |                                        | "                    |                |

- ▶ 205 moments (but some duplicates → 141 unique moments).
- Minimize difference between theoretical moments  $\rho_i$  and sample moments  $\hat{\rho}_i$ ,  $min_{\{...\}} \sum_i w_i (\rho_i \hat{\rho}_i)^2$ .

# Horizontal approach: Summary

### Advantages of the "horizontal" compared to "vertical" approach:

- Socioeconomic outcomes measured within same generation, at approximately same age and time In vertical approach, distant ancestors typically have only basic education and most are farmers
- Can use modern registry data and direct family links Vertical approach relies on historical sources, surname-based estimators
- Can consider many more kinship moments
   Can consider more detailed intergenerational models

# The model

Outcome  $y_t^i$  of child i in generation t

$$y_{t}^{k} = \beta^{k} \tilde{y}_{t-1}^{k} + z_{t}^{k} + x_{t}^{k} + u_{t}^{k}$$
$$z_{t}^{k} = \gamma^{k} \tilde{z}_{t-1}^{k} + e_{t}^{k} + v_{t}^{k}$$

where  $k = \{m, f\}$  denotes male or female children, and  $\{\tilde{y}_{t-1}^k, \tilde{z}_{t-1}^k\}$  weighted parental averages,

$$\begin{split} \tilde{y}_{t-1}^k &= \alpha_y^k y_{t-1}^m + (1 - \alpha_y^k) y_{t-1}^f \\ \tilde{z}_{t-1}^k &= \alpha_z^k z_{t-1}^m + (1 - \alpha_z^k) z_{t-1}^f \end{split}$$

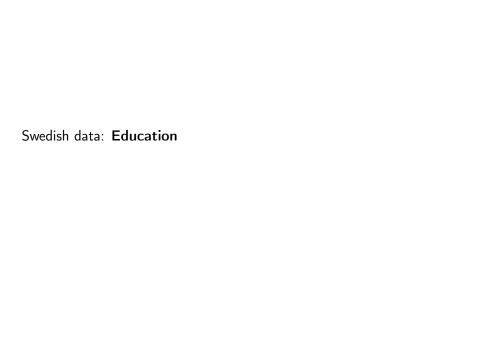
The  $x_t^k$  and  $e_t^k$  are shared by siblings of the same gender, correlated between siblings of different genders.

# Assortative mating

Assortative mating in both observed and latent variable.

Consider the linear projection

$$\left( \begin{array}{c} z_{t-1}^f \\ y_{t-1}^f \end{array} \right) = \left( \begin{array}{c} r_{zz}^m & r_{zy}^m \\ r_{yz}^m & r_{yy}^m \end{array} \right) \left( \begin{array}{c} z_{t-1}^m \\ y_{t-1}^m \end{array} \right) + \left( \begin{array}{c} w_{t-1}^m \\ \varepsilon_{t-1}^m \end{array} \right)$$


where  $w_{t-1}^f$  and  $\mathcal{E}_{t-1}^f$  might be correlated, but uncorrelated with  $z_{t-1}^f$  and  $y_{t-1}^f$ , and where  $r_{sd}^f(s,d=y,z)$  are functions of correlations and standard deviations of  $z^f$ ,  $z^m,y^f$ ,  $y^m$ .

# Model summary

### The baseline model is comparatively general, allowing for:

- 1. Direct  $(\beta^k)$  and indirect  $(\gamma^k)$  transmission
- 2. Two-parent structure (cannot be reduced to one parent)
- 3. Assortative mating in two dimensions (in  $y_t$  and  $z_t$ )
- 4. Correlated shocks among siblings  $(x_t^k \text{ and } e_t^k)$
- 5. Gender asymmetries in all parameters

In total we have 21 unknown parameters.

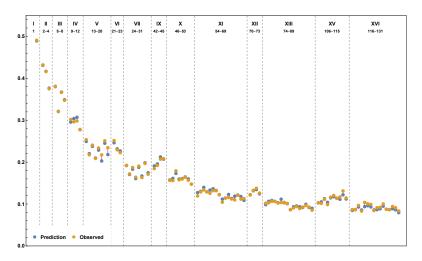


# Education (baseline)

**Education** (years of schooling, demeaned by gender and cohort):

- ▶ 141 distinct moments (up to sibling-in-laws of 5th order)
- Correlations weighted by family size

### Baseline specification:


- ▶ All correlations up to in-laws of 3rd order, exclude cousins
- ▶ 105 moments

# Table: Estimated and Calibrated Moments in Swedish registers (Education)

|      | Kinship type                   | D           | ata         | Calibr      | ation   |      | Kinship type | D        | ata         | Calibr                       | ation   |
|------|--------------------------------|-------------|-------------|-------------|---------|------|--------------|----------|-------------|------------------------------|---------|
| #    | ## name                        | number      | sample      | predicted   | percent | #    | ## name      | number   | sample      | predicted                    | percent |
|      |                                | of pairs    | correlation | correlation | error   |      |              | of pairs | correlation | $\operatorname{correlation}$ | error   |
|      |                                | (1)         | (2)         | (3)         | (4)     |      |              | (1)      | (2)         | (3)                          | (4)     |
| I    | 1 Husband-Wife                 | 413,062     | 0.491       | 0.489       | -0.3    |      |              |          |             |                              |         |
| II   | 2 Brother                      | 387,028     | 0.432       | 0.431       | -0.3    | XII  | 72 MFMS      | 299,602  | 0.138       | 0.135                        | -2.2    |
|      | 3 Sister                       | $431,\!698$ | 0.416       | 0.417       | 0.3     |      | 73 FMMS      | 273,809  | 0.126       | 0.124                        | -1.4    |
|      | 4 Brother-Sister               | $800,\!127$ | 0.375       | 0.377       | 0.5     | XIII | 74 M-MMMS    | 160,726  | 0.102       | 0.098                        | -3.5    |
| III  | 5 Father-Son                   | $396,\!304$ | 0.380       | 0.381       | 0.2     |      | 75 M-MMFS    | 174,261  | 0.103       | 0.106                        | 3.4     |
|      | 6 Father-Daughter              | 376,255     | 0.321       | 0.321       | 0.1     |      | 76 M-MFMS    | 158,401  | 0.107       | 0.109                        | 1.9     |
|      | 7 Mother-Son                   | $306,\!470$ | 0.366       | 0.367       | 0.2     |      | 77 M-MFFS    | 160,105  | 0.106       | 0.106                        | 0.3     |
|      | 8 Mother-Daughter              | 400,337     | 0.347       | 0.349       | 0.5     |      | 78 M-FMMS    | 147,949  | 0.102       | 0.103                        | 0.9     |
| IV   | 9 Brother in-law (HS)          | 602,262     | 0.302       | 0.296       | -2.1    |      | 79 M-FMFS    | 156,876  | 0.103       | 0.111                        | 7.9     |
|      | 10 Brother-Sister in-law (WB)  | 578,269     | 0.296       | 0.304       | 2.7     |      | 80 M-FFMS    | 133,588  | 0.104       | 0.103                        | -1.0    |
|      | 11 Brother-Sister in-law (HS)  | $650,\!127$ | 0.298       | 0.307       | 3.0     |      | 81 M-FFFS    | 131,756  | 0.101       | 0.101                        | -0.5    |
|      | 12 Sister in-law (WB)          | $596,\!540$ | 0.278       | 0.277       | -0.2    |      | 82 F-MMMS    | 152,751  | 0.087       | 0.086                        | -0.1    |
| V    | 13 Nephew-Uncle (BF)           | 280,067     | 0.254       | 0.249       | -1.7    |      | 83 F-MMFS    | 165,828  | 0.091       | 0.093                        | 3.1     |
|      | 14 Niece-Uncle (BF)            | 266,289     | 0.218       | 0.220       | 1.2     |      | 84 F-MFMS    | 151,100  | 0.094       | 0.095                        | 1.7     |
|      | 15 Nephew-Uncle (BM)           | $312,\!019$ | 0.241       | 0.238       | -1.2    |      | 85 F-MFFS    | 153,065  | 0.089       | 0.093                        | 4.9     |
|      | 16 Niece-Uncle (BM)            | $295,\!580$ | 0.209       | 0.210       | 0.5     |      | 86 F-FMMS    | 140,585  | 0.093       | 0.092                        | -1.1    |
|      | 17 Nephew-Aunt (SF)            | $285,\!618$ | 0.234       | 0.229       | -2.1    |      | 87 F-FMFS    | 150,162  | 0.097       | 0.099                        | 2.9     |
|      | 18 Niece-Aunt (SF)             | 270,325     | 0.217       | 0.203       | -6.7    |      | 88 F-FFMS    | 126,129  | 0.093       | 0.092                        | -1.2    |
|      | 19 Nephew-Aunt (SM)            | 333,141     | 0.251       | 0.245       | -2.3    |      | 89 F-FFFS    | 124,968  | 0.085       | 0.090                        | 5.3     |
|      | 20 Niece-Aunt (SM)             | 316,625     | 0.234       | 0.218       | -7.0    | XIV  | 90 M-MMM-M   | 84,025   | 0.094       | 0.082                        | -13.4   |
| VI   | 21 Brother in-law (WWS)        | 252,232     | 0.252       | 0.246       | -2.2    |      | 91 M-MMF-M   | 100,261  | 0.101       | 0.086                        | -15.2   |
|      | 22 Sister in-law (HHB)         | 226,795     | 0.229       | 0.232       | 1.1     |      | 92 M-MFM-M   | 93,237   | 0.105       | 0.090                        | -13.9   |
|      | 23 Brother-Sister in-law (HWBS | $464,\!081$ | 0.222       | 0.227       | 1.9     |      | 93 M-FMM-M   | 80,486   | 0.097       | 0.085                        | -12.0   |
| VII  | 24 Nephew-Aunt in-law (BF)     | 231,767     | 0.192       | 0.192       | -0.3    |      | 94 M-MMM-F   | 79,690   | 0.087       | 0.073                        | -16.7   |
|      | 25 Niece-Aunt in-law (BF)      | 221,287     | 0.172       | 0.171       | -0.8    |      | 95 M-MMF-F   | 95,733   | 0.094       | 0.076                        | -19.9   |
|      | 26 Nephew-Aunt in-law (BM)     | $254,\!534$ | 0.187       | 0.183       | -2.2    |      | 96 M-MFM-F   | 89,364   | 0.093       | 0.080                        | -13.6   |
|      | 27 Niece-Aunt in-law (BM)      | $241,\!873$ | 0.164       | 0.161       | -2.0    |      | 97 M-MFF-F   | 95,020   | 0.095       | 0.075                        | -20.4   |
|      | 28 Nephew-Uncle in-law (SF)    | 227,403     | 0.190       | 0.188       | -1.5    |      | 98 M-FMM-F   | 76,514   | 0.095       | 0.076                        | -20.0   |
|      | 29 Niece-Uncle in-law (SF)     | 215,068     | 0.163       | 0.167       | 2.2     |      | 99 M-FMF-F   | 89,054   | 0.088       | 0.079                        | -9.8    |
|      | 30 Nephew-Uncle in-law (SM)    | 264,524     | 0.197       | 0.198       | 0.8     |      | 100 M-FFM-F  | 77,332   | 0.094       | 0.076                        | -19.0   |
|      | 31 Niece-Uncle in-law (SM)     | 251,782     | 0.171       | 0.175       | 2.1     |      | 101 M-FFF-F  | 80,067   | 0.082       | 0.072                        | -12.9   |
| VIII | 32 Male Cousins (B)            | 70,137      | 0.208       | 0.159       | -23.8   |      | 102 F-MMM-F  | 76,344   | 0.080       | 0.064                        | -20.3   |

|     | 33 Male Cousins (S)         | 82,049  | 0.215 | 0.160 | -25.4 |       | 103 | F- $MMF$ - $F$ | 91,080  | 0.090 | 0.066 | -26.6 |
|-----|-----------------------------|---------|-------|-------|-------|-------|-----|----------------|---------|-------|-------|-------|
|     | 34 Male Cousins (BS)        | 156,747 | 0.202 | 0.152 | -24.8 |       | 104 | F- $MFM$ - $F$ | 84,736  | 0.092 | 0.070 | -23.4 |
|     | 35 Female Cousins (B)       | 63,032  | 0.169 | 0.126 | -25.5 |       | 105 | F- $FMM$ - $F$ | 72,410  | 0.082 | 0.068 | -17.4 |
|     | 36 Female Cousins (S)       | 73,649  | 0.197 | 0.124 | -37.0 | XV    | 106 | XMMMM          | 288,374 | 0.103 | 0.103 | -0.2  |
|     | 37 Female Cousins (BS)      | 140,522 | 0.177 | 0.118 | -33.2 |       | 107 | XMMMF          | 312,703 | 0.102 | 0.105 | 3.5   |
|     | 38 Male-Female Cousins (B)  | 144,100 | 0.179 | 0.141 | -20.9 |       | 108 | XMMFM          | 311,795 | 0.111 | 0.113 | 1.4   |
|     | 39 Male-Female Cousins (S)  | 170,577 | 0.196 | 0.141 | -28.2 |       | 109 | XMMFF          | 162,928 | 0.099 | 0.104 | 5.4   |
|     | 40 Male-Female Cousins (BS) | 148,691 | 0.179 | 0.133 | -25.5 |       | 110 | XMFMM          | 308,163 | 0.116 | 0.115 | -1.5  |
|     | 41 Male-Female Cousins (SB) | 148,631 | 0.184 | 0.135 | -26.5 |       | 111 | XMFMF          | 166,250 | 0.121 | 0.117 | -2.6  |
| IX  | 42 XMMM                     | 461,883 | 0.185 | 0.191 | 3.5   |       | 112 | XMFFM          | 304,684 | 0.114 | 0.114 | 0.3   |
|     | 43 XMMF                     | 500,448 | 0.192 | 0.196 | 1.8   |       | 113 | XFMMM          | 278,416 | 0.117 | 0.111 | -4.9  |
|     | 44 XMFM                     | 481,006 | 0.207 | 0.212 | 2.6   |       | 114 | XFMFM          | 149,478 | 0.131 | 0.122 | -7.0  |
|     | 45 XFMM                     | 447,263 | 0.208 | 0.207 | -0.6  |       | 115 | XFFMM          | 143,733 | 0.115 | 0.112 | -2.2  |
| X   | 46 MMM                      | 362,409 | 0.156 | 0.157 | 0.8   | XVI   | 116 | MMMM           | 230,313 | 0.087 | 0.085 | -2.5  |
|     | 47 MMF                      | 393,579 | 0.156 | 0.161 | 3.4   |       | 117 | MMMF           | 251,223 | 0.087 | 0.087 | 0.2   |
|     | 48 MFM                      | 375,442 | 0.179 | 0.173 | -3.4  |       | 118 | MMFM           | 248,811 | 0.097 | 0.093 | -4.0  |
|     | 49 MFF                      | 391,389 | 0.158 | 0.160 | 1.2   |       | 119 | MMFF           | 259,925 | 0.083 | 0.086 | 3.0   |
|     | 50 FMM                      | 353,470 | 0.160 | 0.161 | 0.8   |       | 120 | MFMM           | 245,814 | 0.104 | 0.094 | -9.7  |
|     | 51 FMF                      | 378,720 | 0.164 | 0.165 | 0.5   |       | 121 | MFMF           | 265,220 | 0.101 | 0.096 | -4.5  |
|     | 52 FFM                      | 341,316 | 0.157 | 0.160 | 2.1   |       | 122 | MFFM           | 241,998 | 0.099 | 0.093 | -6.0  |
|     | 53 FFF                      | 351,350 | 0.148 | 0.148 | 0.0   |       | 123 | MFFF           | 248,449 | 0.084 | 0.086 | 1.7   |
| XI  | 54 M-MMM                    | 202,632 | 0.119 | 0.127 | 6.7   |       | 124 | FMMM           | 224,873 | 0.091 | 0.087 | -5.1  |
|     | 55 M-MMF                    | 219,007 | 0.129 | 0.130 | 1.1   |       | 125 | FMMF           | 246,186 | 0.092 | 0.089 | -3.9  |
|     | 56 M-MFM                    | 192,819 | 0.134 | 0.140 | 4.6   |       | 126 | FMFM           | 237,791 | 0.100 | 0.095 | -5.1  |
|     | 57 M-MFF                    | 199,811 | 0.129 | 0.129 | -0.3  |       | 127 | FMFF           | 247,495 | 0.088 | 0.088 | 0.0   |
|     | 58 M-FMM                    | 183,670 | 0.125 | 0.133 | 6.2   |       | 128 | FFMM           | 223,661 | 0.086 | 0.087 | 0.3   |
|     | 59 M-FMF                    | 196,631 | 0.132 | 0.136 | 3.6   |       | 129 | FFMF           | 240,328 | 0.094 | 0.089 | -5.8  |
|     | 60 M-FFM                    | 160,857 | 0.132 | 0.132 | 0.6   |       | 130 | FFFM           | 213,155 | 0.091 | 0.086 | -5.5  |
|     | 61 M-FFF                    | 164,528 | 0.122 | 0.122 | -0.2  |       | 131 | FFFF           | 220,553 | 0.084 | 0.079 | -4.9  |
|     | 62 F-MMM                    | 192,818 | 0.104 | 0.112 | 7.1   | XVII  | 132 | MMMMS          | 176,790 | 0.071 | 0.066 | -8.3  |
|     | 63 F-MMF                    | 208,008 | 0.114 | 0.114 | 0.2   |       | 133 | MMMFS          | 199,041 | 0.075 | 0.071 | -6.0  |
|     | 64 F-MFM                    | 183,929 | 0.116 | 0.123 | 6.1   | XVIII | 134 | MMMMM          | 153,057 | 0.047 | 0.046 | -3.2  |
|     | 65 F-MFF                    | 191,177 | 0.112 | 0.113 | 1.2   |       | 135 | FFFFF          | 144,976 | 0.054 | 0.043 | -20.1 |
|     | 66 F-FMM                    | 175,507 | 0.110 | 0.119 | 8.0   | XIX   | 136 | MMMMMS         | 117,473 | 0.047 | 0.035 | -25.5 |
|     | 67 F-FMF                    | 187,178 | 0.121 | 0.122 | 0.5   |       | 137 | MMMMFS         | 135,096 | 0.042 | 0.038 | -9.9  |
|     | 68 F-FFM                    | 151,606 | 0.112 | 0.118 | 5.5   | XX    | 138 | MMMMMMM        | 106,844 | 0.031 | 0.025 | -21.9 |
|     | 69 F-FFF                    | 155,658 | 0.113 | 0.109 | -3.7  |       | 139 | FFFFFF         | 100,871 | 0.043 | 0.023 | -46.5 |
| XII | 70 MMMS                     | 278,938 | 0.122 | 0.122 | -0.5  | XXI   | 140 | MMMMMMS        | 82,523  | 0.032 | 0.019 | -40.0 |
|     | 71 MMFS                     | 310,160 | 0.132 | 0.132 | -0.6  |       | 141 | MMMMMFS        | 96,840  | 0.027 | 0.021 | -24.4 |

# Figure: Baseline Fit in Swedish Registers



Panel A: Intergenerational Processes Para

| $\beta^{\mathrm{m}}$ | $eta^{ m f}$       | $\gamma^{\mathrm{m}}$ | $\gamma^{\mathrm{f}}$  |
|----------------------|--------------------|-----------------------|------------------------|
| 0.144                | 0.129              | 0.664                 | 0.565                  |
| $\sigma^2_{ m ym}$   | $\sigma^2_{ m yf}$ | $\sigma^2_{ m zm}$    | $\sigma^2_{ m zf}$     |
| 4.648                | 4.465              | 2.070                 | 1.560                  |
| $\alpha_{ m vm}$     | $\alpha_{ m vf}$   | $\alpha_{ m zm}$      | $\alpha_{\mathrm{zf}}$ |

# Parent-child correlations in z:

0.390

0.586

0.381

0.586

in y

in z

Father-Son Father-Dau Mother-Son Mother-Dau

| ~        |              |    | , , |     |   |
|----------|--------------|----|-----|-----|---|
| Ancestor | correlations | in | y   | and | , |

| cestor | correlations | in | y | and | z: |
|--------|--------------|----|---|-----|----|

Father-Son Grandf-... GGrandf-... GGGrandf-Son

0.209

0.343

0.600

0.020

0.658

0.527

0.121

0.201

0.508

0.773

0.071

0.118

1.978

2.329



| Parameters:         |                      |                          |                       |                     |                    |
|---------------------|----------------------|--------------------------|-----------------------|---------------------|--------------------|
| $\sigma^2_{ m  xm}$ | $\sigma^2_{ m \ xf}$ | $\sigma_{\mathrm{xmxf}}$ | $\sigma^2_{\rm \ em}$ | $\sigma^2_{ m  ef}$ | $\sigma_{ m emef}$ |
| 0.178               | 0.246                | 0.069                    | 0.657                 | 0.711               | 0.625              |
| Variance Shares     | 3:                   |                          |                       |                     |                    |
| in y $3.8\%$        | 5.5%                 | 1.5%                     | 14.1%                 | 15.9%               | 13.7%              |

Panel B: Sibling Processes

Brothers

0.678

Sisters

0.824

| in a | 3.8%  | 5.5%  | 1.5%  | 14.1%  | 15.9%  | 13.7%  |
|------|-------|-------|-------|--------|--------|--------|
| uu y | 3.070 | 0.070 | 1.070 | 14.1/0 | 10.970 | 13.770 |
| in z | -     | -     | -     | 31.7%  | 45.6%  | 34.8%  |

| in y $3.8\%$  | 5.5%           | 1.5% | 14.1% | 15.9% | 13.7% |
|---------------|----------------|------|-------|-------|-------|
| $in \ z$ -    | -              | -    | 31.7% | 45.6% | 34.8% |
| Sibling corre | elations in z: |      |       |       |       |

Brother-Sister

| in y       | 3.8%         | 5.5%  | 1.5% | 14.1% | 15.9% | 13.7% |
|------------|--------------|-------|------|-------|-------|-------|
| in z       | -            | -     | -    | 31.7% | 45.6% | 34.8% |
| Sibling of | correlations | in z: |      |       |       |       |

0.711

# Baseline: Intergenerational results

- Intergenerational transmission (vertical)
  - Little direct transmission ( $eta^k pprox 0.1$ ) and strong latent transmission ( $\gamma^k pprox 0.6$ )
  - Parent-child correlation substantially larger in latent than educational advantages:  $Corr(z_t^k, z_{t-1}^k) \approx 0.55$  vs.  $Corr(y_t^k, y_{t-1}^k) \approx 0.35$
- ► Siblings (horizontal)
  - Siblings share observable (captured in sibling correlation) and latent (not fully captured) advantages.
  - Shared latent component quite important. Sibling correlations in latent factor  $\approx$  0.7 vs.  $\approx$  0.4 in years of schooling

# Baseline: Intergenerational results

- ► Intergenerational transmission (vertical)
  - Little direct transmission ( $eta^k pprox 0.1$ ) and strong latent transmission ( $\gamma^k pprox 0.6$ )
  - ▶ Parent-child correlation substantially larger in latent than educational advantages:  $Corr(z_t^k, z_{t-1}^k) \approx 0.55$  vs.  $Corr(y_t^k, y_{t-1}^k) \approx 0.35$
- Siblings (horizontal)
  - Siblings share observable (captured in sibling correlation) and latent (not fully captured) advantages.
  - ▶ Shared latent component quite important. Sibling correlations in latent factor  $\approx$  0.7 vs.  $\approx$  0.4 in years of schooling

| Parameters:                             |                           |                         |
|-----------------------------------------|---------------------------|-------------------------|
| $ m r^m_{_{_{_{_{_{_{_{_{_{zz}}}}}}}}}$ | ${ m r}^{ m m}_{ m \ zy}$ | ${ m r^m}_{ m yz}$      |
| 0.663                                   | -0.008                    | 0.696                   |
| $\mathbf{r}_{\mathrm{zz}}^{\mathrm{f}}$ | $ m r_{zy}^f$             | ${ m r}_{ m yz}^{ m f}$ |

Panel C: Assortative Processes

0.747

 $\rho_{ymyf}$ 

0.489

Male

Female

%

0.112

0.662

 $\rho_{\rm zmyf}$ 

 $r^{m}_{\phantom{m}yy}$ 

0.143

0.249

 $\mathbf{r}_{\mathrm{yy}}^{\mathrm{f}}$ 

Spousal correlations in y and z:

 $\rho_{zmzf}$ 

у

0.754

0.013

0.016

 $\rho_{ymzf}$ 0.540

Panel D: Variance Decomposition  $\mathbf{z}$ 

0.445

0.349



0.038

0.055



Cov(y,z)

0.038

0.030

0.6732.919

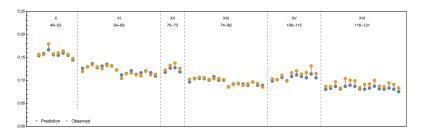
# Baseline: Results

- Assortative mating (horizontal)
  - Strong sorting in latent factor, little additional sorting by education
  - Spousal correlations substantially higher in latent than in educational advantages:  $Corr(z_{t-1}^m, z_{t-1}^f) = 0.79$  vs.  $Corr(y_{t-1}^m, y_{t-1}^f) = 0.49$
- Gender asymmetries
  - Shared sibling component in latent factor z similar for same- and mixed-gender siblings
  - Shared sibling component in education y lower for mixed-gender siblings

# Baseline: Results

- Assortative mating (horizontal)
  - Strong sorting in latent factor, little additional sorting by education
  - ▶ Spousal correlations substantially higher in latent than in educational advantages:  $Corr(z_{t-1}^m, z_{t-1}^f) = 0.79$  vs.  $Corr(y_{t-1}^m, y_{t-1}^f) = 0.49$
- Gender asymmetries
  - Shared sibling component in latent factor z similar for same- and mixed-gender siblings
  - Shared sibling component in education y lower for mixed-gender siblings

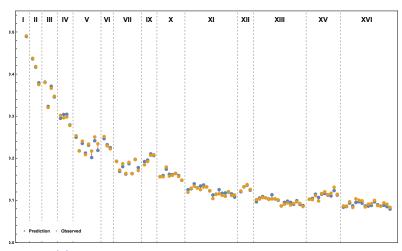
# Robustness and out-of-sample fit


# Good in-sample fit:

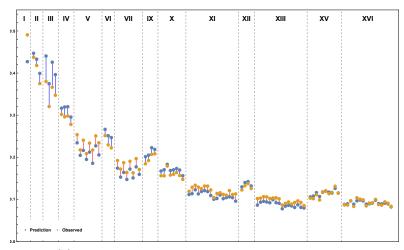
- Across vertical and horizontal moments
- Across consanguine ("blood") and affine ("in-law") relations
- ▶ Mean absolute error across 105 kinship types = 1.9 percent

# Mostly good out-of-sample fit. Robustness test:

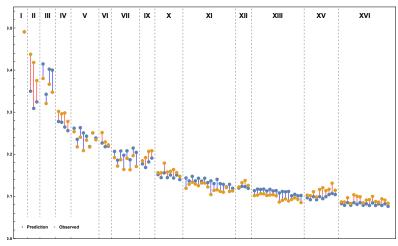
- ▶ Drop moment groups 10+ (including distant kins)
- Reduces set of empirical moments from 105 to 35


### Figure: Out-of-Sample Fit in Swedish Registers

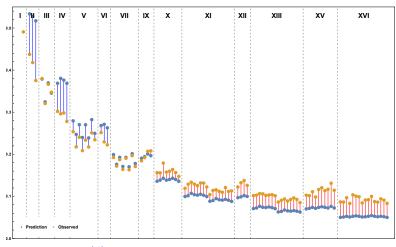



### Restricted models

Can more restricted models fit the data?


- 1. No direct transmission ( $\beta = 0$ )
- 2. No latent transmission ( $\gamma = 0$ )
- 3. No shared sibling component
- 4. Assortative mating only in observables




(a) Restricted model without direct transmission (eta=0)



(b) Restricted model without latent transmission ( $\gamma = 0$ )



(c) Restricted model without shared sibling component



(d) Assortative mating only in observables

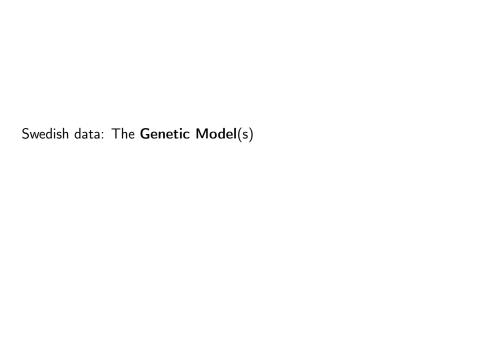
## Other applications

### Sweden, income: Sweden Income

- ► Findings qualitatively similar, latent advantages more strongly transmitted than income itself
- However, vertical transmission of latent factors not as strong as for education

## Spain, education: Spain Education

- ► Results qualitatively similar as in Sweden, but more persistence across all intergenerational, siblings, assortative dimensions
- ▶ Parent-child correlation in  $z \approx 0.8$ , spousal correlation  $\approx 0.9$


## Other applications

#### Sweden, income: Sweden Income

- ► Findings qualitatively similar, latent advantages more strongly transmitted than income itself
- However, vertical transmission of latent factors not as strong as for education

### Spain, education: Spain Education

- Results qualitatively similar as in Sweden, but more persistence across all intergenerational, siblings, assortative dimensions
- ▶ Parent-child correlation in  $z \approx 0.8$ , spousal correlation  $\approx 0.9$



## The standard genetic and two-factor models

Our baseline model quantifies the transferability of socioeconomic advantages from parents to children

- Decomposes transferability along intergenerational, sibling and assortative dimensions
- Otherwise remained agnostic about causal mechanisms

Next: Are genes an important component of the latent advantages captured by our model? Two exercises:

- 1. Standard genetic model (nested by our baseline model)
- 2. Two-factor model (with latent genetic and sociocultural factors)

## The standard genetic and two-factor models

Our baseline model quantifies the transferability of socioeconomic advantages from parents to children

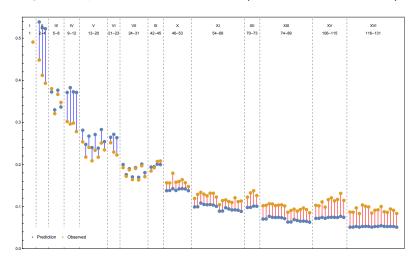
- Decomposes transferability along intergenerational, sibling and assortative dimensions
- Otherwise remained agnostic about causal mechanisms

Next: Are genes an important component of the latent advantages captured by our model? Two exercises:

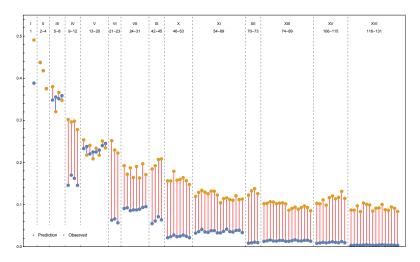
- 1. Standard genetic model (nested by our baseline model)
- 2. Two-factor model (with latent genetic and sociocultural factors)

## The standard genetic model

We first consider the standard genetic model of genetic inheritance used in Quantitative Genetics (Crow an Felsenstein, 1968).


Corresponds to our baseline model with following restrictions:

- $\beta^m = \beta^f = 0$ 
  - $ightharpoonup \gamma^m = \gamma^f = 1$ ,  $\alpha_z^m = \alpha_z^f = 0.5$ ,  $\sigma(z^m) = \sigma(z^f)$
  - ▶ assortative mating in phenotype (e.g. education)


## The standard genetic model and education

- ► The standard genetic model cannot fit the kinship correlations in education
  - Spouses must be far more similar in latent determinants of education than they are in "phenotype" education.
- ► However, the genetic model *appears* to fit if we were to consider only siblings, parents-children and uncles and aunts
- Need lots of data and many kinship moments to discriminate between genetic and other models!

Figure: Sample and Predicted Moments (Education, Genetic Model)



### Figure: Sample and Predicted Moments (Genetic Model, 15 Moments)



## The two-factor model and education

Two-factor model: To quantify the relative contribution of genes, we decompose the the latent factor  $z_t^k$  into a genetic a genetic factor  $z_t^{G,k}$ , and a "cultural" factor  $z_t^{C,k}$ .

Outcome y for individual from generation t and gender k

$$y_t^k = \beta^k \widetilde{y}_{t-1}^k + z_t^{G,k} + z_t^{C,k} + x_t^k + u_t^k$$

where  $z_t^{G,k}$  follows the standard model of genetic inheritance (Crow and Felsenstein, 1968),

$$z_t^{G,k} = \frac{z_{t-1}^{G,m} + z_{t-1}^{G,f}}{2} + v_t^{G,k}$$

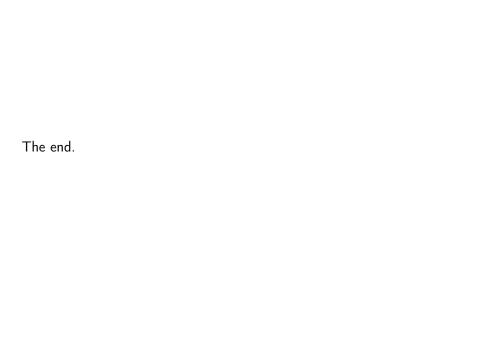
where  $v_t^{G,k}$  is a white-noise error term.

▶ Do not need to impose that the "environments" of parents and offspring are independent as  $z_t^{C,k}$  captures shared environments.

#### The two-factor model and education

Results based on the two-factor model: Nesults: Two Factor

- ► Genetic factor explains only 7% of the variance in years of schooling. Sociocultural factor explains 38% (31%) for males (females).
  - Heritability estimate consistent with recent evidence from *genome-wide* association studies based on direct genetic information (e.g. Lee et al, 2018)
- Only negligible correlation between latent genetic factor and latent cultural factor.
- ▶ Little assortative mating in genes Consistent with evidence from polygenic scores (Domingue et al, 2014; Yengo et al 2018)


## Summary

#### Main findings:

- Socioeconomic advantages are substantially more persistent than what one can observe from correlations in observable status (such as income or education)
- ► High degree of intergenerational persistence and very strong assortative mating in latent advantages
- ▶ A purely genetic model cannot explain the kinship pattern in education. (In Sweden, genes can explain 7%, sociocultural factors about 35% of the variance in education.)

#### Implications:

▶ What does this mean for observed cross-country differences in mobility, or between-group differences?



## Interpretation

Does it matter if inequality is so highly persistent?

- ► Valuable input for debate on capitalism and inequality (e.g. Friedman, Becker, Piketty).
- Connects intergenerational inequality with group inequality, such as ethnic and racial inequalities (Borjas 1992, Margo 2017)? Individual-level and group-level persistence start to look similar.
- ► How to interpret prior parent-child evidence. Is mobility really higher in Canada than in US, or higher in Sweden than Spain?
- ► How effective is (social) policy across multiple generations, if observable status matters so little for intergenerational transmission?

## Outlook

#### Remaining questions:

- 1. Consider more alternative models, such as the "grandparent effect" model ...
- 2. How sensitive are our results to violations of the steady-state assumption?
- 3. To which degree can we abstract from vertical moments?

## Intergenerational persistence

 Early literature (e.g. Becker and Tomes, 1986), estimates intergenerational elasticity of income

$$y_t = \beta y_{t-1} + \varepsilon_t$$

with  $\hat{\beta} \approx 0.15$  for U.S.

- However, these estimates turned out to be downward biased because of measurement error
  - Attenuation bias from classical measurement error (e.g. Atkinson 1980s, Solon, 1999)  $\rightarrow \hat{\beta} \approx 0.4$  for U.S.
  - Lifecycle bias (e.g. Jenkins 1987, Nybom and Stuhler 2016, Mazumder 2016)  $\rightarrow \hat{\beta} \approx$  0.5 for U.S. (?)

## Multigenerational persistence


More recent literature on persistence across multiple generations:

- ▶ High persistence of socioeconomic status on the **surname** level (e.g. Clark, 2014). For example, in historical data from Florence the average status of surnames still correlates across generations that are six centuries apart (Barone and Mocetti, 2019)
- ▶ Other studies observe direct family links, but fewer generations

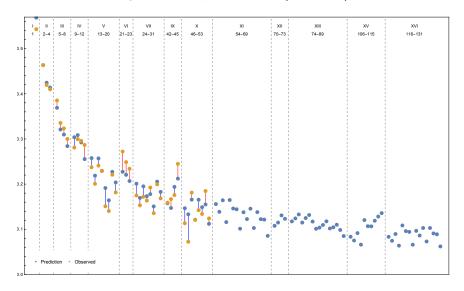
Can be interpreted in latent transmission model in

$$y_t = \delta z_t + u_t$$
$$z_t = \gamma z_{t-1} + v_t$$

 $ightarrow \gamma \approx 0.75$  (Clark, 2014) or  $\approx 0.6$  (Braun and Stuhler, 2018)?



# Education (Spain)


#### **Education** (years of schooling, demeaned by gender and cohort):

- Census from Cantabria
- 65 distinct moments: spouse, parent-child, siblings, nephew/niece-uncle/aunt, sibling-in-law up to second order
- # of moments should in principle suffice (-> robustness test in Swedish registers)

#### Main results:

- Results qualitatively similar as in Sweden
- Butt more persistence across all three dimensions: intergenerational, siblings, assortative
- ▶ Parent-child correlation in  $z \approx 0.8$ , spousal correlation  $\approx 0.9$

Figure: Fit in Spanish Census (Education)



### Panel A: Intergenerational Processes

Parameters:

 $\alpha_{\mathrm{ym}}$ 

in y

in z

0.742

0.369

| recect 5.            |                    |                    |                       |
|----------------------|--------------------|--------------------|-----------------------|
| $\beta^{\rm m}$      | $eta^{ m f}$       | $\gamma^{\rm m}$   | $\gamma^{ m f}$       |
| 0.027                | 0.111              | 0.915              | 0.842                 |
| $\sigma^2_{ m \ ym}$ | $\sigma^2_{ m yf}$ | $\sigma^2_{ m zm}$ | $\sigma^2_{\rm \ zf}$ |
| 13.579               | 13.213             | 6.519              | 2.779                 |

 $\alpha_{\rm zm}$ 

0.587

 $\alpha_{\mathrm{vf}}$ 

0.855

0.7600.827

Parent-child correlations in z:

Father-Son Father-Dau Mother-Son Mother-Dau 0.7320.883

 $\alpha_{\rm zf}$ 

0.127

 $\sigma^2_{\text{um}}$ 

5.162

 $\sigma^2_{\rm uf}$ 

7.003

Ancestor correlations in y and z: Father-Son Grandf-... GGrandf-... GGGrandf-...

0.2710.2050.156

| i arameters.         |                      |                     |  |
|----------------------|----------------------|---------------------|--|
| $\sigma^2_{ m \ xm}$ | $\sigma^2_{ m \ xf}$ | $\sigma_{\rm xmxf}$ |  |
| 1.650                | 2.644                | 2.089               |  |
| Variance Shares:     |                      |                     |  |
| $in \ u = 12.1\%$    | 20.0%                | 15.6%               |  |

| Varian | ce Shares: |       |       |
|--------|------------|-------|-------|
| in y   | 12.1%      | 20.0% | 15.6% |
| in z   | -          | -     | -     |

| in z     | - | - |  |
|----------|---|---|--|
| C -1 1 - |   |   |  |

Brothers

0.674

Panel B: Sibling Processes

Parametere.

0.784



 $\sigma^2_{
m ef}$ 

0.001

0.0%

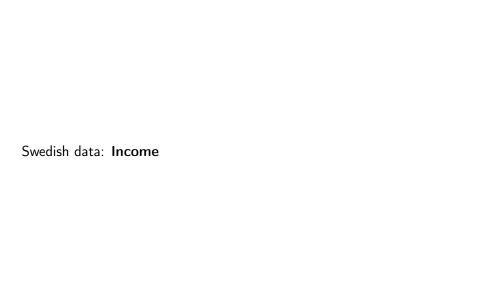
 $\sigma^2_{\rm em}$ 

0.558

4.1%

8.6%

Brother-Sister


0.667



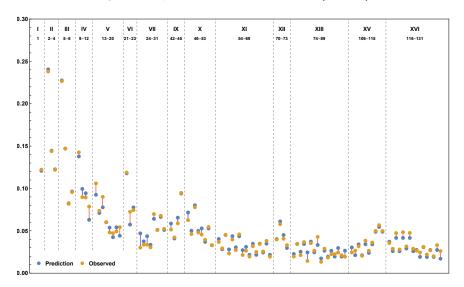
 $\sigma_{\rm emef}$ 

0.018

| Panel C.                        | : Assortative              | Processes                 | •                                         |                           |                                 |                                   |
|---------------------------------|----------------------------|---------------------------|-------------------------------------------|---------------------------|---------------------------------|-----------------------------------|
| Param                           | neters:                    |                           |                                           |                           |                                 |                                   |
|                                 | ${ m r}^{ m m}_{~{ m zz}}$ | ${ m r}^{ m m}_{ m \ zy}$ | $\mathbf{r}^{\mathrm{m}}_{\ \mathrm{yz}}$ | ${ m r}^{ m m}_{\  m yy}$ | $\sigma^2_{~\omega \mathrm{m}}$ | $\sigma^2_{~\epsilon \mathrm{m}}$ |
|                                 | 0.731                      | -0.139                    | 0.418                                     | 0.357                     | 0.381                           | 8.369                             |
|                                 | $ m r_{zz}^{f}$            | ${f r}_{zy}^{ m f}$       | ${f r}_{ m yz}^{ m f}$                    | ${f r}_{ m yy}^{ m f}$    |                                 |                                   |
|                                 | 1.291                      | 0.083                     | 0.576                                     | 0.441                     |                                 |                                   |
| Spouse                          | al correlatio              | ns in y and z             | <b>:</b> :                                |                           |                                 |                                   |
|                                 | $\rho_{\rm ymyf}$          | $\rho_{\rm zmzf}$         | $\rho_{\rm ymzf}$                         | $\rho_{\rm zmyf}$         |                                 |                                   |
|                                 | 0.569                      | 0.903                     | 0.483                                     | 0.549                     |                                 |                                   |
| Panel D: Variance Decomposition |                            |                           |                                           |                           |                                 |                                   |
|                                 | %                          | y                         | $\mathbf{z}$                              | X                         | Cov(y,z)                        |                                   |
|                                 | Male                       | 0.001                     | 0.480                                     | 0.121                     | 0.009                           |                                   |
|                                 | Female                     | 0.010                     | 0.210                                     | 0.200                     | 0.009                           |                                   |



# Income (Sweden)


Educational attainment is key mediator for transmission of socio-economic advantages ("OED triangle", "Goldthorpe 2014). But do results generalize to other socioeconomic outcomes?

- ► Ten-year average of annual pre-tax income
- Measured around age 35 for children and around age 45 for parents
- ▶ 141 distinct moments, using 129 moments for calibration

#### Issues:

- ▶ Income correlations systematically lower for mixed or female pairs
- We do not model labor supply decisions, but model flexible enough to capture gender asymmetries

Figure: Sample and Predicted Moments (Income)



# Income (Sweden): Results

Findings are qualitatively similar, but differ in magnitude:

Latent advantages more strongly transmitted than income itself, in all intergenerational, sibling and assortative processes:

- ► Father-son correlation in latent factor twice as large as in log income
- ▶ Sibling correlation in latent factor  $\approx 0.8$
- ▶ Spousal correlation in latent factor  $\approx 0.65$  (vs.  $\approx 0.12$  in log income)

However, the latent factors that determine educational attainment appear more strongly transmitted from one generation to the next than the latent factors that influence income. Pack

## Empirical Application: Spanish Census

## Spanish Population Census 2001:

For the region of Cantabria we observe the full name of each person, and can use this information to identify kinship:

- ► Child generation born 1956-1976 (71,479 males, 68,830 females)
- ▶ A newborn in Spain receives two surnames, the first is the father's and the second the mother's (first) surname.
- ▶ Set of potential parents: couples born<1956, husband's and wife's surnames fit, age difference between parents and son>=16 years. Parents identified if only one couple in set (35% of cases).
- Siblings in child generation are identified.
- ▶ Set of potential siblings in parent generation: individuals sharing the same two surnames. Siblings identified if two individuals in set.

#### Table: Calibrated Parameters in Swedish Registers (Height)

#### Panel A: Intergenerational Processes Parameters: 0.0001.000 1.000 0.000 $\sigma^{2}_{m}$ $\sigma_{\rm vf}^2$ $\sigma^2_{af}$ 0.7310.7310.1630.2371.0001.000 $\alpha_{\mathrm{vm}}$ $\alpha_{\mathrm{vf}}$ $\alpha_{\rm zm}$ $\alpha_{\rm zf}$ 0.0000.0000.5000.500

Parent-child correlations in z:

Father-Son Father-Dau Mother-Son Mother-Dau 0.605 0.605 0.605 0.605

Ancestor correlations in y and z:

Father-Son Grandf-... GGGrandf-...

in y = 0.470 = 0.285 = 0.172 = 0.104

in z

| rel | <i>B</i> : | Sibling | Processes |
|-----|------------|---------|-----------|
|     |            |         |           |

#### Parametere.

| 1 11 | ranicicis.          |                     |
|------|---------------------|---------------------|
|      | $\sigma_{\rm vm}^2$ | $\sigma^2_{\rm vf}$ |
|      | $\sigma_{\rm xm}^2$ | $\sigma_{xf}^2$     |

| $\sigma^2$ | $\sigma^2$ |
|------------|------------|
| O xm       | O x        |

#### 0.1070.032

## Variance Shares:

in y 
$$10.7\%$$

$$in \ y = 10.770$$
 $in \ z = -$ 

3.2%

 $\sigma_{\rm vmvf}$ 

0.000

0.0%

0.653

Brother-Sister

 $\sigma^2_{ef}$ 

0.066

6.6%

9.0%

0.000

0.0%

0.0%

 $\sigma_{\rm emef}$ 

0.035

3.5%

4.8%

| Panel C | : Assortative          | e Processes       |                   |                   |                        |                         |
|---------|------------------------|-------------------|-------------------|-------------------|------------------------|-------------------------|
| Paran   | neters:                |                   |                   |                   |                        |                         |
|         | $ m r^m_{~zz}$         | $ m r^m_{zy}$     | $ m r^m_{~ m yz}$ | $ m r^m_{~ m yy}$ | $\sigma^2_{~\omega m}$ | $\sigma^2_{\epsilon m}$ |
|         | 0.000                  | 0.210             | 0.000             | 0.287             | 0.687                  | 0.917                   |
|         | $ m r_{zz}^{f}$        | $ m r_{zy}^{f}$   | $ m r_{yz}^f$     | $ m r_{yy}^f$     |                        |                         |
|         | 0.000                  | 0.210             | 0.000             | 0.287             |                        |                         |
| Spous   | al correlation         | ons in y and      | <i>z</i> :        |                   |                        |                         |
|         | $\rho_{\mathrm{ymyf}}$ | $\rho_{\rm zmzf}$ | $\rho_{\rm ymzf}$ | $\rho_{\rm zmyf}$ |                        |                         |
|         | 0.287                  | 0.210             | 0.246             | 0.246             |                        |                         |
| Panel D | : Variance I           | Decompositi       | on                |                   |                        |                         |
|         | %                      | У                 | $\mathbf{z}$      | X                 | Cov(y,z)               |                         |
|         | Male                   | 0.000             | 0.731             | 0.107             | 0.000                  |                         |
|         | Female                 | 0.000             | 0.731             | 0.032             | 0.000                  |                         |

0.003

600.0

680.0

Panel A: Intergenerational Processes Parameters: $\beta^{m}$ 

 $\beta^f$ 

|             | 0.113              | 0.098                  | 0.691                  | 0.586                  |                     |
|-------------|--------------------|------------------------|------------------------|------------------------|---------------------|
|             | $\sigma^2_{ m ym}$ | $\sigma^2_{ m yf}$     | $\sigma^2_{\rm zcm}$   | $\sigma^2_{zcf}$       | $\sigma^2_{ m zgm}$ |
|             | 4.648              | 4.465                  | 1.778                  | 1.375                  | 0.312               |
|             | $\alpha_{ m ym}$   | $\alpha_{\mathrm{yf}}$ | $\alpha_{\mathrm{zm}}$ | $\alpha_{\mathrm{zf}}$ |                     |
|             | 0.447              | 0.000                  | 0.574                  | 0.657                  |                     |
| Within-pers | son correlation    | ons in y and           | z:                     |                        |                     |
|             | $\rho_{\rm yzc}$   | $\rho_{\rm yzg}$       | $\rho_{\rm zczg}$      |                        |                     |
| males       | 0.670              | 0.301                  | 0.032                  |                        |                     |
| females     | 0.599              | 0.301                  | 0.032                  |                        |                     |

Father-Son Father-Dau Mother-Son Mother-Dau

0.537

0.512

0.549

0.122

0.200

| in zg        | 0.512         | 0.512   |
|--------------|---------------|---------|
| $in \ zc+zg$ | 0.584         | 0.584   |
| Ancestor co  | rrelations is | n y and |

0.379

0.584

Father-Son

Parent-child correlations in z:

0.578

in. 2C

in y

in zc+zq

| and   | z:  |
|-------|-----|
| Franc | df- |

0.579

| y | ana   | , |
|---|-------|---|
| C | franc | d |
| 0 | .210  |   |

0.342

0.509

0.512

0.527

0.071 0.117

| Panel B: Sibling Processes       |                      |                     |                     |                     |                     |                     |  |  |  |
|----------------------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|--|--|
| Parameters:                      |                      |                     |                     |                     |                     |                     |  |  |  |
|                                  | $\sigma^2_{ m \ xm}$ | $\sigma_{\rm xf}^2$ | $\sigma_{\rm xmxf}$ | $\sigma^2_{\rm em}$ | $\sigma^2_{ m ef}$  | $\sigma_{\rm emef}$ |  |  |  |
|                                  | 0.118                | 0.174               | 0.000               | 0.679               | 0.729               | 0.651               |  |  |  |
| Variance Shares:                 |                      |                     |                     |                     |                     |                     |  |  |  |
| in y                             | 2.5%                 | 3.9%                | 0.0%                | 14.6%               | 16.3%               | 14.3%               |  |  |  |
| in z                             | -                    | -                   | -                   | 38.2%               | 53.0%               | 41.6%               |  |  |  |
| Sibling correlations in z:       |                      |                     |                     |                     |                     |                     |  |  |  |
|                                  | Brothers             | Sisters             | Brother-Sister      |                     |                     |                     |  |  |  |
| in zc                            | 0.750                | 0.886               | 0.778               |                     |                     |                     |  |  |  |
| in zg                            | 0.512                | 0.512               | 0.512               |                     |                     |                     |  |  |  |
| Panel C: Assortative Processes   |                      |                     |                     |                     |                     |                     |  |  |  |
| Spousal correlations in y and z: |                      |                     |                     |                     |                     |                     |  |  |  |
|                                  | $\rho_{\rm ymyf}$    | $\rho_{\rm ymzcf}$  | $\rho_{\rm ymzgf}$  | $\rho_{\rm zcmyf}$  | $\rho_{\rm zcmzcf}$ | $\rho_{\rm zcmzgf}$ |  |  |  |
|                                  | 0.491                | 0.518               | 0.096               | 0.548               | 0.703               | 0.079               |  |  |  |
|                                  | $\rho_{\rm zgmyf}$   | $\rho_{\rm zgmzcf}$ | $\rho_{\rm zgmzgf}$ |                     |                     |                     |  |  |  |
|                                  | 0.080                | 0.047               | 0.024               |                     |                     |                     |  |  |  |
| Panel D: Variance Decomposition  |                      |                     |                     |                     |                     |                     |  |  |  |
|                                  | %                    | у                   | z                   | zg                  | X                   |                     |  |  |  |
|                                  | Male                 | 0.009               | 0.383               | 0.067               | 0.025               |                     |  |  |  |
|                                  | Female               | 0.010               | 0.308               | 0.070               | 0.039               |                     |  |  |  |